新聞中心
相信我們在沒接觸過排序知識之前,一定會覺得快速排序非常具有魅力,不因別的單純快排這個名字就讓人不明覺厲,但是了解一個算法不應該只知道code,了解思想,應用非常重要。

成都創(chuàng)新互聯(lián)公司主要從事成都做網(wǎng)站、成都網(wǎng)站制作、網(wǎng)頁設計、企業(yè)做網(wǎng)站、公司建網(wǎng)站等業(yè)務。立足成都服務宕昌,十載網(wǎng)站建設經(jīng)驗,價格優(yōu)惠、服務專業(yè),歡迎來電咨詢建站服務:18980820575
在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況并不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因為它的內(nèi)部循環(huán)(inner loop)可以在大部分的架構上很有效率地被實現(xiàn)出來。
快速排序使用分治法(Divide and conquer)策略來把一個串行(list)分為兩個子串行(sub-lists)。
快速排序又是一種分而治之思想在排序算法上的典型應用。本質(zhì)上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。
快速排序的名字起的是簡單粗暴,因為一聽到這個名字你就知道它存在的意義,就是快,而且效率高!它是處理大數(shù)據(jù)最快的排序算法之一了。雖然 Worst Case 的時間復雜度達到了 O(n2),但是人家就是優(yōu)秀,在大多數(shù)情況下都比平均時間復雜度為 O(n logn) 的排序算法表現(xiàn)要更好,可是這是為什么呢,我也不知道。好在我的強迫癥又犯了,查了 N 多資料終于在《算法藝術與信息學競賽》上找到了滿意的答案:
快速排序的最壞運行情況是 O(n2),比如說順序數(shù)列的快排。但它的平攤期望時間是 O(nlogn),且 O(nlogn) 記號中隱含的常數(shù)因子很小,比復雜度穩(wěn)定等于 O(nlogn) 的歸并排序要小很多。所以,對絕大多數(shù)順序性較弱的隨機數(shù)列而言,快速排序總是優(yōu)于歸并排序。
1. 算法步驟
-
從數(shù)列中挑出一個元素,稱為 “基準”(pivot);
-
重新排序數(shù)列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的后面(相同的數(shù)可以到任一邊)。在這個分區(qū)退出之后,該基準就處于數(shù)列的中間位置。這個稱為分區(qū)(partition)操作;
-
遞歸地(recursive)把小于基準值元素的子數(shù)列和大于基準值元素的子數(shù)列排序;
2. 動圖演示
代碼實現(xiàn)
JavaScript
實例
function quickSort(arr, left, right) {
var len = arr.length,
partitionIndex,
left = typeof left != 'number' ? 0 : left,
right = typeof right != 'number' ? len - 1 : right;
if (left return arr;
}
function partition(arr, left ,right) { // 分區(qū)操作
var pivot = left, // 設定基準值(pivot)
index = pivot + 1;
for (var i = index; i if (arr[i] return index-1;
}
function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function partition2(arr, low, high) {
let pivot = arr[low];
while (low while (low pivot) {
--high;
}
arr[low] = arr[high];
while (low return low;
}
function quickSort2(arr, low, high) {
if (low let pivot = partition2(arr, low, high);
quickSort2(arr, low, pivot - 1);
quickSort2(arr, pivot + 1, high);
}
return arr;
}
Python
實例
def quickSort(arr, left=None, right=None):
left = 0 if not isinstance(left,(int, float)) else left
right = len(arr)-1 if not isinstance(right,(int, float)) else right
if left return arr
def partition(arr, left, right):
pivot = left
index = pivot+1
i = index
while i if arr[i] return index-1
def swap(arr, i, j):
arr[i], arr[j] = arr[j], arr[i]
Go
實例
func quickSort(arr []int) []int {
return _quickSort(arr, 0, len(arr)-1)
}
func _quickSort(arr []int, left, right int) []int {
if left return arr
}
func partition(arr []int, left, right int) int {
pivot := left
index := pivot + 1
for i := index; i if arr[i] return index - 1
}
func swap(arr []int, i, j int) {
arr[i], arr[j] = arr[j], arr[i]
}
C++
實例
//嚴蔚敏《數(shù)據(jù)結構》標準分割函數(shù)
Paritition1(int A[], int low, int high) {
int pivot = A[low];
while (low while (low = pivot) {
--high;
}
A[low] = A[high];
while (low return low;
}
void QuickSort(int A[], int low, int high) //快排母函數(shù)
{
if (low
Java
實例
public class QuickSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數(shù)內(nèi)容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
return quickSort(arr, 0, arr.length - 1);
}
private int[] quickSort(int[] arr, int left, int right) {
if (left return arr;
}
private int partition(int[] arr, int left, int right) {
// 設定基準值(pivot)
int pivot = left;
int index = pivot + 1;
for (int i = index; i if (arr[i] return index - 1;
}
private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
PHP
實例
function quickSort($arr)
{
if (count($arr) return $arr;
$middle = $arr[0];
$leftArray = array();
$rightArray = array();
for ($i = 1; $i $arr); $i++) {
if ($arr[$i] > $middle)
$rightArray[] = $arr[$i];
else
$leftArray[] = $arr[$i];
}
$leftArray = quickSort($leftArray);
$leftArray[] = $middle;
$rightArray = quickSort($rightArray);
return array_merge($leftArray, $rightArray);
}
C
實例
typedef struct _Range {
int start, end;
} Range;
Range new_Range(int s, int e) {
Range r;
r.start = s;
r.end = e;
return r;
}
void swap(int *x, int *y) {
int t = *x;
*x = *y;
*y = t;
}
void quick_sort(int arr[], const int len) {
if (len return; // 避免len等於負值時引發(fā)段錯誤(Segment Fault)
// r[]模擬列表,p為數(shù)量,r[p++]為push,r[--p]為pop且取得元素
Range r[len];
int p = 0;
r[p++] = new_Range(0, len - 1);
while (p) {
Range range = r[--p];
if (range.start >= range.end)
continue;
int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點
int left = range.start, right = range.end;
do {
while (arr[left] while (arr[right] > mid) --right; //檢測基準點右側是否符合要求
if (left while (left if (range.start if (range.end > left) r[p++] = new_Range(left, range.end);
}
}
遞歸法
實例
void swap(int *x, int *y) {
int t = *x;
*x = *y;
*y = t;
}
void quick_sort_recursive(int arr[], int start, int end) {
if (start >= end)
return;
int mid = arr[end];
int left = start, right = end - 1;
while (left while (arr[left] while (arr[right] >= mid && left if (arr[left] >= arr[end])
swap(&arr[left], &arr[end]);
else
left++;
if (left)
quick_sort_recursive(arr, start, left - 1);
quick_sort_recursive(arr, left + 1, end);
}
void quick_sort(int arr[], int len) {
quick_sort_recursive(arr, 0, len - 1);
}
C++
函數(shù)法
sort(a,a + n);// 排序a[0]-a[n-1]的所有數(shù).
迭代法
實例
// 參考:http://www.dutor.net/index.php/2011/04/recursive-iterative-quick-sort/
struct Range {
int start, end;
Range(int s = 0, int e = 0) {
start = s, end = e;
}
};
template // 整數(shù)或浮點數(shù)皆可使用,若要使用物件(class)時必須設定"小於"("大於"(>)、"不小於"(>=)的運算子功能
void quick_sort(T arr[], const int len) {
if (len return; // 避免len等於負值時宣告堆疊陣列當機
// r[]模擬堆疊,p為數(shù)量,r[p++]為push,r[--p]為pop且取得元素
Range r[len];
int p = 0;
r[p++] = Range(0, len - 1);
while (p) {
Range range = r[--p];
if (range.start >= range.end)
continue;
T mid = arr[range.end];
int left = range.start, right = range.end - 1;
while (left while (arr[left] while (arr[right] >= mid && left if (arr[left] >= arr[range.end])
std::swap(arr[left], arr[range.end]);
else
left++;
r[p++] = Range(range.start, left - 1);
r[p++] = Range(left + 1, range.end);
}
}
遞歸法
實例
template
void quick_sort_recursive(T arr[], int start, int end) {
if (start >= end)
return;
T mid = arr[end];
int left = start, right = end - 1;
while (left while (arr[left] while (arr[right] >= mid && left if (arr[left] >= arr[end])
std::swap(arr[left], arr[end]);
else
left++;
quick_sort_recursive(arr, start, left - 1);
quick_sort_recursive(arr, left + 1, end);
}
template //整數(shù)或浮點數(shù)皆可使用,若要使用物件(class)時必須設定"小於"("大於"(>)、"不小於"(>=)的運算子功能
void quick_sort(T arr[], int len) {
quick_sort_recursive(arr, 0, len - 1);
}
分享題目:詳解快速排序
文章網(wǎng)址:http://fisionsoft.com.cn/article/dphjdog.html


咨詢
建站咨詢
