最近2018中文字幕在日韩欧美国产成人片_国产日韩精品一区二区在线_在线观看成年美女黄网色视频_国产精品一区三区五区_国产精彩刺激乱对白_看黄色黄大色黄片免费_人人超碰自拍cao_国产高清av在线_亚洲精品电影av_日韩美女尤物视频网站

RELATEED CONSULTING
相關(guān)咨詢
選擇下列產(chǎn)品馬上在線溝通
服務(wù)時(shí)間:8:30-17:00
你可能遇到了下面的問(wèn)題
關(guān)閉右側(cè)工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營(yíng)銷(xiāo)解決方案
Hadoop部署之Hadoop(三)-創(chuàng)新互聯(lián)

一、Hadoop 介紹

Hadoop的框架最核心的設(shè)計(jì)就是:HDFS和MapReduce。HDFS為海量的數(shù)據(jù)提供了存儲(chǔ),則MapReduce為海量的數(shù)據(jù)提供了計(jì)算。

創(chuàng)新互聯(lián)公司服務(wù)項(xiàng)目包括微山網(wǎng)站建設(shè)、微山網(wǎng)站制作、微山網(wǎng)頁(yè)制作以及微山網(wǎng)絡(luò)營(yíng)銷(xiāo)策劃等。多年來(lái),我們專注于互聯(lián)網(wǎng)行業(yè),利用自身積累的技術(shù)優(yōu)勢(shì)、行業(yè)經(jīng)驗(yàn)、深度合作伙伴關(guān)系等,向廣大中小型企業(yè)、政府機(jī)構(gòu)等提供互聯(lián)網(wǎng)行業(yè)的解決方案,微山網(wǎng)站推廣取得了明顯的社會(huì)效益與經(jīng)濟(jì)效益。目前,我們服務(wù)的客戶以成都為中心已經(jīng)輻射到微山省份的部分城市,未來(lái)相信會(huì)繼續(xù)擴(kuò)大服務(wù)區(qū)域并繼續(xù)獲得客戶的支持與信任!

Hadoop 部署之 Hadoop (三)


Hadoop 部署之 Hadoop (三)

1、HDFS 介紹

Hadoop實(shí)現(xiàn)了一個(gè)分布式文件系統(tǒng)(Hadoop Distributed File System),簡(jiǎn)稱HDFS。

HDFS有高容錯(cuò)性的特點(diǎn),并且設(shè)計(jì)用來(lái)部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)來(lái)訪問(wèn)應(yīng)用程序的數(shù)據(jù),適合那些有著超大數(shù)據(jù)集(large data set)的應(yīng)用程序。HDFS放寬了(relax)POSIX的要求,可以以流的形式訪問(wèn)(streaming access)文件系統(tǒng)中的數(shù)據(jù)。

2、HDFS 組成

HDFS采用主從(Master/Slave)結(jié)構(gòu)模型,一個(gè)HDFS集群是由一個(gè)NameNode和若干個(gè)DataNode組成的。NameNode作為主服務(wù)器,管理文件系統(tǒng)命名空間和客戶端對(duì)文件的訪問(wèn)操作。DataNode管理存儲(chǔ)的數(shù)據(jù)。HDFS支持文件形式的數(shù)據(jù)。

從內(nèi)部來(lái)看,文件被分成若干個(gè)數(shù)據(jù)塊,這若干個(gè)數(shù)據(jù)塊存放在一組DataNode上。NameNode執(zhí)行文件系統(tǒng)的命名空間,如打開(kāi)、關(guān)閉、重命名文件或目錄等,也負(fù)責(zé)數(shù)據(jù)塊到具體DataNode的映射。DataNode負(fù)責(zé)處理文件系統(tǒng)客戶端的文件讀寫(xiě),并在NameNode的統(tǒng)一調(diào)度下進(jìn)行數(shù)據(jù)庫(kù)的創(chuàng)建、刪除和復(fù)制工作。NameNode是所有HDFS元數(shù)據(jù)的管理者,用戶數(shù)據(jù)永遠(yuǎn)不會(huì)經(jīng)過(guò)NameNode。

Hadoop 部署之 Hadoop (三)

3、MapReduce 介紹

Hadoop MapReduce是google MapReduce 克隆版。

MapReduce是一種計(jì)算模型,用以進(jìn)行大數(shù)據(jù)量的計(jì)算。其中Map對(duì)數(shù)據(jù)集上的獨(dú)立元素進(jìn)行指定的操作,生成鍵-值對(duì)形式中間結(jié)果。Reduce則對(duì)中間結(jié)果中相同“鍵”的所有“值”進(jìn)行規(guī)約,以得到最終結(jié)果。MapReduce這樣的功能劃分,非常適合在大量計(jì)算機(jī)組成的分布式并行環(huán)境里進(jìn)行數(shù)據(jù)處理。

4、MapReduce 架構(gòu)

Hadoop MapReduce采用Master/Slave(M/S)架構(gòu),如下圖所示,主要包括以下組件:Client、JobTracker、TaskTracker和Task。

Hadoop 部署之 Hadoop (三)

JobTracker

  1. JobTracker叫作業(yè)跟蹤器,運(yùn)行到主節(jié)點(diǎn)(Namenode)上的一個(gè)很重要的進(jìn)程,是MapReduce體系的調(diào)度器。用于處理作業(yè)(用戶提交的代碼)的后臺(tái)程序,決定有哪些文件參與作業(yè)的處理,然后把作業(yè)切割成為一個(gè)個(gè)的小task,并把它們分配到所需要的數(shù)據(jù)所在的子節(jié)點(diǎn)。
  2. Hadoop的原則就是就近運(yùn)行,數(shù)據(jù)和程序要在同一個(gè)物理節(jié)點(diǎn)里,數(shù)據(jù)在哪里,程序就跑去哪里運(yùn)行。這個(gè)工作是JobTracker做的,監(jiān)控task,還會(huì)重啟失敗的task(于不同的節(jié)點(diǎn)),每個(gè)集群只有唯一一個(gè)JobTracker,類似單點(diǎn)的NameNode,位于Master節(jié)點(diǎn)

TaskTracker

  1. TaskTracker叫任務(wù)跟蹤器,MapReduce體系的最后一個(gè)后臺(tái)進(jìn)程,位于每個(gè)slave節(jié)點(diǎn)上,與datanode結(jié)合(代碼與數(shù)據(jù)一起的原則),管理各自節(jié)點(diǎn)上的task(由jobtracker分配),
  2. 每個(gè)節(jié)點(diǎn)只有一個(gè)tasktracker,但一個(gè)tasktracker可以啟動(dòng)多個(gè)JVM,運(yùn)行Map Task和Reduce Task;并與JobTracker交互,匯報(bào)任務(wù)狀態(tài),
  3. Map Task:解析每條數(shù)據(jù)記錄,傳遞給用戶編寫(xiě)的map(),并執(zhí)行,將輸出結(jié)果寫(xiě)入本地磁盤(pán)(如果為map-only作業(yè),直接寫(xiě)入HDFS)。
  4. Reducer Task:從Map Task的執(zhí)行結(jié)果中,遠(yuǎn)程讀取輸入數(shù)據(jù),對(duì)數(shù)據(jù)進(jìn)行排序,將數(shù)據(jù)按照分組傳遞給用戶編寫(xiě)的reduce函數(shù)執(zhí)行。

二、Hadoop的安裝

1、下載安裝

# 下載安裝包
wget https://archive.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

# 解壓安裝包
tar xf hadoop-2.7.3.tar.gz && mv hadoop-2.7.3 /usr/local/hadoop

# 創(chuàng)建目錄
mkdir -p /home/hadoop/{name,data,log,journal}

2、配置 Hadoop 環(huán)境變量

創(chuàng)建文件/etc/profile.d/hadoop.sh。

# HADOOP ENV
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

使 Hadoop 環(huán)境變量生效。

source /etc/profile.d/hadoop.sh

三、Hadoop 配置

1、配置 hadoop-env.sh

編輯文件/usr/local/hadoop/etc/hadoop/hadoop-env.sh,修改下面字段。

export JAVA_HOME=/usr/java/default
export HADOOP_HOME=/usr/local/hadoop

2、配置 yarn-env.sh

編輯文件/usr/local/hadoop/etc/hadoop/yarn-env.sh,修改下面字段。

export JAVA_HOME=/usr/java/default

3、配置 DN 白名單 slaves

編輯文件/usr/local/hadoop/etc/hadoop/slaves

datanode01
datanode02
datanode03

4、配置核心組件 core-site.xml

編輯文件/usr/local/hadoop/etc/hadoop/core-site.xml,修改為如下:

       
        
        
                fs.default.name
                hdfs://cluster1:9000
        

        
        
                hadoop.tmp.dir
                /home/hadoop/data
        

        
        
                ha.zookeeper.quorum
                zk01:2181,zk02:2181,zk03:2181
        

        
                dfs.permissions
                false
        

        
        
                io.file.buffer.size
                131702
        

5、配置文件系統(tǒng) hdfs-site.xml

編輯文件/usr/local/hadoop/etc/hadoop/hdfs-site.xml,修改為如下:


        
        
                dfs.namenode.name.dir
                file:/home/hadoop/name
        

        
        
                dfs.datanode.data.dir
                file:/home/hadoop/data
        

        
        
                dfs.replication
                2
        

        
        
                dfs.webhdfs.enabled
                true
        

        
        
                dfs.nameservices
                cluster1
        

6、配置計(jì)算框架 mapred-site.xml

編輯文件/usr/local/hadoop/etc/hadoop/mapred-site.xml,修改為如下:


        
        
                mapreduce.framework.name
                yarn
        

        
        
                mapred.local.dir
                /home/hadoop/data
        

        
        
                mapreduce.admin.map.child.java.opts
                -Xmx256m
        

        
        
                mapreduce.admin.reduce.child.java.opts
                -Xmx4096m
        

        
        
                mapred.child.java.opts
                -Xmx512m
        

        
        
                mapred.task.timeout
                1200000
                true
        

        
        
                dfs.hosts.exclude
                slaves.exclude
        

        
        
                mapred.hosts.exclude
                slaves.exclude
        

7、配置計(jì)算框架 yarn-site.xml

編輯文件/usr/local/hadoop/etc/hadoop/yarn-site.xml,修改為如下:


        
        
                yarn.resourcemanager.hostname
                namenode01
        

        
        
                yarn.resourcemanager.address
                ${yarn.resourcemanager.hostname}:8032
        

        
        
                yarn.resourcemanager.scheduler.address
                ${yarn.resourcemanager.hostname}:8030
        

        
        
                yarn.resourcemanager.webapp.address
                ${yarn.resourcemanager.hostname}:8088
        

        
        
                yarn.resourcemanager.resource-tracker.address
                ${yarn.resourcemanager.hostname}:8031
        

        
        
                yarn.resourcemanager.admin.address
                ${yarn.resourcemanager.hostname}:8033
        

        
        
                yarn.scheduler.maximum-allocation-mb
                983040
        

        
        
                yarn.resourcemanager.scheduler.class
        
                yarn.resourcemanager.resource-tracker.address
                ${yarn.resourcemanager.hostname}:8031
        

        
        
                yarn.resourcemanager.admin.address
                ${yarn.resourcemanager.hostname}:8033
        

        
        
                yarn.scheduler.maximum-allocation-mb
                8182
        

        
        
                yarn.resourcemanager.scheduler.class
                org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler
        

        
        
                yarn.log-aggregation-enable
                true
        

                yarn.resourcemanager.scheduler.class
                org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler
        

        
        
                yarn.scheduler.maximum-allocation-vcores
                512
        

        
        
                yarn.scheduler.minimum-allocation-mb
                2048
        

        
        
                yarn.log-aggregation-enable
                true
        

        
        
                yarn.log-aggregation.retain-seconds
                604800
        

        
        
                yarn.nodemanager.resource.cpu-vcores
                12
        

        
        
                yarn.nodemanager.resource.memory-mb
                8192
        

        
        
                yarn.nodemanager.vmem-check-enabled
                false
        

        
        
                yarn.nodemanager.pmem-check-enabled
                false
        

        
        
                yarn.nodemanager.vmem-pmem-ratio
                2.1
        

        
        
                yarn.nodemanager.disk-health-checker.max-disk-utilization-per-disk-percentage
                98.0
        

        
        
                yarn.nodemanager.aux-services
                mapreduce_shuffle
         

        
        
                yarn.nodemanager.auxservices.mapreduce.shuffle.class
                org.apache.hadoop.mapred.ShuffleHandler
        

8、將配置文件復(fù)制到其他服務(wù)節(jié)點(diǎn)

cd /usr/local/hadoop/etc/hadoop
scp * datanode01:/usr/local/hadoop/etc/hadoop
scp * datanode02:/usr/local/hadoop/etc/hadoop
scp * datanode03:/usr/local/hadoop/etc/hadoop
chown -R hadoop:hadoop /usr/local/hadoop
chmod 755 /usr/local/hadoop/etc/hadoop

四、Hadoop 啟動(dòng)

1、格式化 HDFS(在NameNode01執(zhí)行)

hdfs namenode -format
hadoop-daemon.sh start namenode

2、重啟 Hadoop(在NameNode01執(zhí)行)

stop-all.sh
start-all.sh

五、檢查 Hadoop

1、檢查JPS進(jìn)程

[root@namenode01 ~]# jps
17419 NameNode
17780 ResourceManager
18152 Jps

[root@datanode01 ~]# jps
2227 DataNode
1292 QuorumPeerMain
2509 Jps
2334 NodeManager

[root@datanode02 ~]# jps
13940 QuorumPeerMain
18980 DataNode
19093 NodeManager
19743 Jps

[root@datanode03 ~]# jps
19238 DataNode
19350 NodeManager
14215 QuorumPeerMain
20014 Jps

2、HDFS 的 WEB 界面

訪問(wèn) http://192.168.1.200:50070/

Hadoop 部署之 Hadoop (三)

Hadoop 部署之 Hadoop (三)

3、YARN 的 WEB 界面

訪問(wèn) http://192.168.1.200:8088/

Hadoop 部署之 Hadoop (三)

Hadoop 部署之 Hadoop (三)

六、MapReduce的WordCount驗(yàn)證

1、上傳需要處理的文件到 hdfs。

[root@namenode01 ~]# hadoop fs -put /root/anaconda-ks.cfg /anaconda-ks.cfg

2、進(jìn)行 wordcount

[root@namenode01 ~]# cd /usr/local/hadoop/share/hadoop/mapreduce/
[root@namenode01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2.7.3.jar wordcount /anaconda-ks.cfg /test

18/11/17 00:04:45 INFO client.RMProxy: Connecting to ResourceManager at namenode01/192.168.1.200:8032
18/11/17 00:04:45 INFO input.FileInputFormat: Total input paths to process : 1
18/11/17 00:04:45 INFO mapreduce.JobSubmitter: number of splits:1
18/11/17 00:04:45 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1541095016765_0004
18/11/17 00:04:46 INFO impl.YarnClientImpl: Submitted application application_1541095016765_0004
18/11/17 00:04:46 INFO mapreduce.Job: The url to track the job: http://namenode01:8088/proxy/application_1541095016765_0004/
18/11/17 00:04:46 INFO mapreduce.Job: Running job: job_1541095016765_0004
18/11/17 00:04:51 INFO mapreduce.Job: Job job_1541095016765_0004 running in uber mode : false
18/11/17 00:04:51 INFO mapreduce.Job:  map 0% reduce 0%
18/11/17 00:04:55 INFO mapreduce.Job:  map 100% reduce 0%
18/11/17 00:04:59 INFO mapreduce.Job:  map 100% reduce 100%
18/11/17 00:04:59 INFO mapreduce.Job: Job job_1541095016765_0004 completed successfully
18/11/17 00:04:59 INFO mapreduce.Job: Counters: 49
    File System Counters
        FILE: Number of bytes read=1222
        FILE: Number of bytes written=241621
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=1023
        HDFS: Number of bytes written=941
        HDFS: Number of read operations=6
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=1
        Launched reduce tasks=1
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=1758
        Total time spent by all reduces in occupied slots (ms)=2125
        Total time spent by all map tasks (ms)=1758
        Total time spent by all reduce tasks (ms)=2125
        Total vcore-milliseconds taken by all map tasks=1758
        Total vcore-milliseconds taken by all reduce tasks=2125
        Total megabyte-milliseconds taken by all map tasks=1800192
        Total megabyte-milliseconds taken by all reduce tasks=2176000
    Map-Reduce Framework
        Map input records=38
        Map output records=90
        Map output bytes=1274
        Map output materialized bytes=1222
        Input split bytes=101
        Combine input records=90
        Combine output records=69
        Reduce input groups=69
        Reduce shuffle bytes=1222
        Reduce input records=69
        Reduce output records=69
        Spilled Records=138
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=99
        CPU time spent (ms)=970
        Physical memory (bytes) snapshot=473649152
        Virtual memory (bytes) snapshot=4921606144
        Total committed heap usage (bytes)=441450496
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
       wRONG_LENGTH=0
       wRONG_MAP=0
       wRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=922
    File Output Format Counters 
        Bytes Written=941

3、查看結(jié)果

[root@namenode01 mapreduce]# hadoop fs -cat /test/part-r-00000
#   11
#version=DEVEL  1
$6$kRQ2y1nt/B6c6ETs$ITy0O/E9P5p0ePWlHJ7fRTqVrqGEQf7ZGi5IX2pCA7l25IdEThUNjxelq6wcD9SlSa1cGcqlJy2jjiV9/lMjg/  1
%addon  1
%end    2
%packages   1
--all   1
--boot-drive=sda    1
--bootproto=dhcp    1
--device=enp1s0 1
--disable   1
--drives=sda    1
--enable    1
--enableshadow  1
--hostname=localhost.localdomain    1
--initlabel 1
--ipv6=auto 1
--isUtc 1
--iscrypted 1
--location=mbr  1
--onboot=off    1
--only-use=sda  1
--passalgo=sha512   1
--reserve-mb='auto' 1
--type=lvm  1
--vckeymap=cn   1
--xlayouts='cn' 1
@^minimal   1
@core   1
Agent   1
Asia/Shanghai   1
CDROM   1
Keyboard    1
Network 1
Partition   1
Root    1
Run 1
Setup   1
System  4
Use 2
auth    1
authorization   1
autopart    1
boot    1
bootloader  2
cdrom   1
clearing    1
clearpart   1
com_redhat_kdump    1
configuration   1
first   1
firstboot   1
graphical   2
ignoredisk  1
information 3
install 1
installation    1
keyboard    1
lang    1
language    1
layouts 1
media   1
network 2
on  1
password    1
rootpw  1
the 1
timezone    2
zh_CN.UTF-8 1

七、Hadoop 的使用

查看fs幫助命令: hadoop fs -help
查看HDFS磁盤(pán)空間: hadoop fs -df -h
創(chuàng)建目錄: hadoop fs -mkdir
上傳本地文件: hadoop fs -put
查看文件: hadoop fs -ls
查看文件內(nèi)容: hadoop fs –cat
復(fù)制文件: hadoop fs -cp
下載HDFS文件到本地: hadoop fs -get
移動(dòng)文件: hadoop fs -mv
刪除文件: hadoop fs -rm -r -f
刪除文件夾: hadoop fs -rm –r

另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。


文章名稱:Hadoop部署之Hadoop(三)-創(chuàng)新互聯(lián)
URL網(wǎng)址:http://fisionsoft.com.cn/article/ceehsh.html