新聞中心
在Python中,我們可以使用多種方法來刪除異常值,異常值是指那些與其他數(shù)據(jù)點顯著不同的數(shù)據(jù)點,它們可能是由于測量誤差、數(shù)據(jù)錄入錯誤或其他原因?qū)е碌模瑒h除異常值是數(shù)據(jù)預(yù)處理的一個重要步驟,可以幫助我們提高模型的準確性和穩(wěn)定性,以下是一些常用的刪除異常值的方法:

創(chuàng)新互聯(lián)是專業(yè)的錫林郭勒盟網(wǎng)站建設(shè)公司,錫林郭勒盟接單;提供成都做網(wǎng)站、成都網(wǎng)站建設(shè)、成都外貿(mào)網(wǎng)站建設(shè),網(wǎng)頁設(shè)計,網(wǎng)站設(shè)計,建網(wǎng)站,PHP網(wǎng)站建設(shè)等專業(yè)做網(wǎng)站服務(wù);采用PHP框架,可快速的進行錫林郭勒盟網(wǎng)站開發(fā)網(wǎng)頁制作和功能擴展;專業(yè)做搜索引擎喜愛的網(wǎng)站,專業(yè)的做網(wǎng)站團隊,希望更多企業(yè)前來合作!
1、基于箱線圖的方法
箱線圖是一種用于描述數(shù)據(jù)分布的圖形方法,它可以幫助我們識別異常值,通過繪制數(shù)據(jù)的四分位數(shù)(Q1、Q2、Q3)以及最小值和最大值,我們可以觀察到哪些數(shù)據(jù)點遠離其他數(shù)據(jù)點,通常,我們將超出上下邊界1.5倍四分位距的數(shù)據(jù)點視為異常值。
以下是使用Python繪制箱線圖并刪除異常值的示例:
import numpy as np
import matplotlib.pyplot as plt
生成隨機數(shù)據(jù)
data = np.random.randn(100)
計算四分位數(shù)
Q1 = np.percentile(data, 25)
Q3 = np.percentile(data, 75)
IQR = Q3 Q1
計算上下邊界
lower_bound = Q1 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
刪除異常值
data_no_outliers = data[(data >= lower_bound) & (data <= upper_bound)]
繪制箱線圖
plt.boxplot(data, labels=["Data"])
plt.title("Boxplot of Data")
plt.show()
2、基于Zscore的方法
Zscore是一種衡量數(shù)據(jù)點與均值之間距離的方法,它可以用來衡量數(shù)據(jù)的異常程度,Zscore的計算公式為:Z = (x μ) / σ,其中x是數(shù)據(jù)點,μ是數(shù)據(jù)的均值,σ是數(shù)據(jù)的標(biāo)準差,通常情況下,Zscore大于3或小于3的數(shù)據(jù)點被認為是異常值。
以下是使用Python計算Zscore并刪除異常值的示例:
import numpy as np
from scipy import stats
生成隨機數(shù)據(jù)
data = np.random.randn(100)
計算均值和標(biāo)準差
mu, std = np.mean(data), np.std(data)
計算Zscore
z_scores = (data mu) / std
刪除異常值
data_no_outliers = data[np.abs(z_scores) < 3]
繪制箱線圖
plt.boxplot(data, labels=["Data"])
plt.title("Boxplot of Data")
plt.show()
3、基于IQR的方法(雙向離群值檢測)
IQR方法是一種基于四分位數(shù)范圍的異常值檢測方法,它可以有效地處理非對稱分布的數(shù)據(jù),對于每個數(shù)據(jù)點,我們計算其與上下邊界的距離,然后根據(jù)距離判斷是否為異常值,通常,我們將距離超過上下邊界1.5倍IQR的數(shù)據(jù)點視為異常值。
以下是使用Python計算IQR并刪除異常值的示例:
import numpy as np import pandas as pd from scipy import stats 生成隨機數(shù)據(jù) data = np.random.randn(100) df = pd.DataFrame(data, columns=['Value']) 計算四分位數(shù)和IQR Q1 = df['Value'].quantile(0.25) Q3 = df['Value'].quantile(0.75) IQR = Q3 Q1 lower_bound = Q1 1.5 * IQR upper_bound = Q3 + 1.5 * IQR 刪除異常值 data_no_outliers = df[(df['Value'] >= lower_bound) & (df['Value'] <= upper_bound)] print(data_no_outliers)
4、基于聚類的方法(Kmeans)
Kmeans是一種常用的聚類算法,它可以將數(shù)據(jù)劃分為K個簇,通過觀察每個數(shù)據(jù)點所屬的簇,我們可以發(fā)現(xiàn)那些不屬于任何簇的數(shù)據(jù)點,這些數(shù)據(jù)點可能是異常值,為了確保聚類結(jié)果的穩(wěn)定性,我們需要多次運行Kmeans算法并選擇最佳的K值,我們還可以使用肘部法則來確定最佳的K值。
以下是使用Python和scikitlearn庫進行Kmeans聚類并刪除異常值的示例:
from sklearn.cluster import KMeans import numpy as np import pandas as pd from scipy import stats from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline, make_union, make_column_transformer, make_dummy, make_classification, make_regression, make_indicator, SelectFromModel, OneHotEncoder, DummyEncoder, PolynomialFeatures, StandardScaler, FunctionTransformer, SelectColumns, Concatenate, GroupBy, AggregationTransformer, MaxAbsScaler, RobustScaler, MinMaxScaler, PowerTransformer, LogTransformer, BoxCoxTransformer, BaseNCounter, CountVectorizer, TfidfTransformer, HashingVectorizer, TextFilter, Normalizer, StopWordsRemover, WordSegmenter, StringIndexer, CountVectorizerOneHotEncoderMixin, SimpleImputer, MultiLabelBinarizer, MultiOutputClassifierWrapper, MultiOutputRegressorWrapper, StackingRegressor, StackingClassifier, VotingRegressor, VotingClassifier, StackingRegressorCV, StackingClassifierCV, VotingRegressorCV, VotingClassifierCV, StackingRegressorCVWithEstimates, StackingClassifierCVWithEstimates, VotingRegressorCVWithEstimates, VotingClassifierCVWithEstimates, StackingRegressorWithEstimatesCV, StackingClassifierWithEstimatesCV, VotingRegressorWithEstimatesCV, VotingClassifierWithEstimatesCV, StackingRegressorWithEstimatesCVWithConfusionMatrix, StackingClassifierWithEstimatesCVWithConfusionMatrix, VotingRegressorWithEstimatesCVWithConfusionMatrix, VotingClassifierWithEstimatesCVWithConfusionMatrix, StackingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingData, StackingClassifierWithEstimatesCVWithConfusionMatrixFromTrainingData, VotingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingData, VotingClassifierWithEstimatesCVWithConfusionMatrixFromTrainingData, StackingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictions, StackingClassifierWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictions, VotingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictions, VotingClassifierWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictions, StackingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValues, StackingClassifierWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValues, VotingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValues, VotingClassifierWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValues, StackingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValuesAndSampleWeight, StackingClassifierWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValuesAndSampleWeight, VotingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValuesAndSampleWeight, VotingClassifierWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValuesAndSampleWeight, StackingRegressorWithEstimatesCVWithConfusionMatrixFromTrainingDataAndPredictionsAndTargetValuesAndSampleWeightAndOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlagParametersSetToNoneOrAnyOfTheOptionsInTurnExceptForOptimizeFlag
當(dāng)前標(biāo)題:python如何刪除異常值
文章出自:http://fisionsoft.com.cn/article/coipghg.html


咨詢
建站咨詢
