新聞中心
量化交易是一種通過(guò)數(shù)學(xué)模型和計(jì)算機(jī)技術(shù)來(lái)實(shí)現(xiàn)投資策略的方法,在Python中,我們可以使用各種庫(kù)和工具來(lái)實(shí)現(xiàn)量化交易策略,本文將詳細(xì)介紹如何使用Python進(jìn)行量化交易。

創(chuàng)新互聯(lián)是一家專注于網(wǎng)站設(shè)計(jì)制作、做網(wǎng)站與策劃設(shè)計(jì),吳忠網(wǎng)站建設(shè)哪家好?創(chuàng)新互聯(lián)做網(wǎng)站,專注于網(wǎng)站建設(shè)十余年,網(wǎng)設(shè)計(jì)領(lǐng)域的專業(yè)建站公司;建站業(yè)務(wù)涵蓋:吳忠等地區(qū)。吳忠做網(wǎng)站價(jià)格咨詢:18980820575
準(zhǔn)備工作
1、安裝Python環(huán)境:首先需要安裝Python環(huán)境,建議安裝Anaconda,它是一個(gè)包含Python和眾多科學(xué)計(jì)算庫(kù)的發(fā)行版本,方便我們進(jìn)行量化交易的開(kāi)發(fā)。
2、安裝相關(guān)庫(kù):在Anaconda環(huán)境中,我們需要安裝一些常用的庫(kù),如NumPy、Pandas、Matplotlib、TALib等,可以使用以下命令進(jìn)行安裝:
conda install numpy pandas matplotlib talib
3、獲取數(shù)據(jù):量化交易需要大量的歷史數(shù)據(jù)來(lái)進(jìn)行分析和預(yù)測(cè),我們可以從各種數(shù)據(jù)源獲取數(shù)據(jù),如雅虎財(cái)經(jīng)、新浪財(cái)經(jīng)等,還可以使用第三方庫(kù)如yfinance來(lái)獲取股票數(shù)據(jù)。
import yfinance as yf
data = yf.download('AAPL', start='20200101', end='20201231')
數(shù)據(jù)分析
1、數(shù)據(jù)預(yù)處理:在進(jìn)行量化分析之前,需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理,如去除空值、異常值等,可以使用Pandas庫(kù)進(jìn)行數(shù)據(jù)預(yù)處理。
import pandas as pd 去除空值 data = data.dropna() 去除異常值,這里以收盤(pán)價(jià)為例,假設(shè)超過(guò)均值3個(gè)標(biāo)準(zhǔn)差為異常值 mean = data['Close'].mean() std = data['Close'].std() data = data[(data['Close'] mean).abs() <= 3 * std]
2、技術(shù)指標(biāo)計(jì)算:量化交易中經(jīng)常使用各種技術(shù)指標(biāo)來(lái)分析市場(chǎng)走勢(shì),如均線、MACD、RSI等,可以使用TALib庫(kù)來(lái)計(jì)算這些指標(biāo)。
import talib 計(jì)算均線 data['MA5'] = talib.SMA(data['Close'], timeperiod=5) data['MA10'] = talib.SMA(data['Close'], timeperiod=10) 計(jì)算MACD指標(biāo) data['DIF'], data['DEA'], data['MACD'] = talib.MACD(data['Close']) 計(jì)算RSI指標(biāo) data['RSI'] = talib.RSI(data['Close'])
策略編寫(xiě)
1、定義策略:根據(jù)技術(shù)指標(biāo)和市場(chǎng)規(guī)律,我們可以編寫(xiě)自己的交易策略,當(dāng)短期均線上穿長(zhǎng)期均線時(shí)買(mǎi)入,下穿時(shí)賣(mài)出。
def strategy(data):
buy_signals = []
sell_signals = []
for i in range(1, len(data)):
if data['MA5'][i] > data['MA10'][i] and data['MA5'][i 1] <= data['MA10'][i 1]:
buy_signals.append(data.index[i])
elif data['MA5'][i] < data['MA10'][i] and data['MA5'][i 1] >= data['MA10'][i 1]:
sell_signals.append(data.index[i])
return buy_signals, sell_signals
2、回測(cè)策略:使用歷史數(shù)據(jù)對(duì)策略進(jìn)行回測(cè),評(píng)估策略的有效性,可以使用backtrader庫(kù)進(jìn)行回測(cè)。
import backtrader as bt
import datetime
class MyStrategy(bt.Strategy):
def __init__(self):
self.buy_signals = []
self.sell_signals = []
self.order = None
self.data_close = self.datas[0].close
self.buy_price = None
self.sell_price = None
self.commission = 0.001 # 手續(xù)費(fèi)比例,可以根據(jù)實(shí)際調(diào)整
self.brokerage_fee = 0.001 # 傭金比例,可以根據(jù)實(shí)際調(diào)整
self.balance = 100000 # 初始資金,可以根據(jù)實(shí)際調(diào)整
self.shares = None # 持倉(cāng)數(shù)量,根據(jù)買(mǎi)賣(mài)信號(hào)動(dòng)態(tài)更新
self.result = None # 回測(cè)結(jié)果,包括收益率、最大回撤等指標(biāo)
self.strategy(None) # 運(yùn)行策略函數(shù),生成買(mǎi)賣(mài)信號(hào)和持倉(cāng)信息等數(shù)據(jù)結(jié)構(gòu)
def next(self):
if len(self.buy_signals) > 0 and self.buy_signals[1] == self.data.datetime[0]:
self.buy_price = self.data_close[0] * (1 + self.commission + self.brokerage_fee) / (1 self.commission self.brokerage_fee)
self.order = self.buy() # 發(fā)出買(mǎi)入指令,執(zhí)行買(mǎi)賣(mài)操作,并更新持倉(cāng)信息等數(shù)據(jù)結(jié)構(gòu)
self.buy_signals = [] # 清空買(mǎi)入信號(hào)列表,等待下一次買(mǎi)入信號(hào)出現(xiàn)時(shí)再進(jìn)行處理
elif len(self.sell_signals) > 0 and self.sell_signals[1] == self.data.datetime[0]:
self.sell_price = self.data_close[0] * (1 self.commission self.brokerage_fee) / (1 + self.commission + self.brokerage_fee) * self.shares[0] / self.pnl[0] + self.commission + self.brokerage_fee + self.cost[0] * self.shares[0] / self.pnl[0] * (1 + self.commission + self.brokerage_fee) / (1 self.commission self.brokerage_fee) * self.shares[0] / self.pnl[0] self.cost[0] * (1 + self.commission + self.brokerage_fee) / (1 self.commission self.brokerage_fee) * self.shares[0] / self.pnl[0] self.commission self.brokerage_fee * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self.pnl[0]) ** 2 / (1 self.commission self.brokerage_fee) * (self.shares[0] / self
文章名稱:如何用python做量化
本文網(wǎng)址:http://fisionsoft.com.cn/article/dhephgp.html


咨詢
建站咨詢
