新聞中心
在Python中,我們可以使用多種庫來導(dǎo)入圖片,以下是一些常用的庫及其使用方法:

成都創(chuàng)新互聯(lián)自2013年起,是專業(yè)互聯(lián)網(wǎng)技術(shù)服務(wù)公司,擁有項目成都網(wǎng)站建設(shè)、成都網(wǎng)站設(shè)計網(wǎng)站策劃,項目實施與項目整合能力。我們以讓每一個夢想脫穎而出為使命,1280元始興做網(wǎng)站,已為上家服務(wù),為始興各地企業(yè)和個人服務(wù),聯(lián)系電話:18980820575
1、PIL(Python Imaging Library):PIL是Python的一個圖像處理庫,可以用來打開、操作和保存各種不同格式的圖像文件,我們需要安裝PIL庫,可以使用以下命令進行安裝:
pip install pillow
安裝完成后,我們可以使用以下代碼導(dǎo)入一張圖片:
from PIL import Image
打開圖片
image = Image.open("example.jpg")
顯示圖片
image.show()
2、OpenCV:OpenCV是一個開源的計算機視覺庫,可以用來處理和分析圖像和視頻數(shù)據(jù),我們需要安裝OpenCV庫,可以使用以下命令進行安裝:
pip install opencvpython
安裝完成后,我們可以使用以下代碼導(dǎo)入一張圖片:
import cv2
讀取圖片
image = cv2.imread("example.jpg")
顯示圖片
cv2.imshow("Image", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
3、scikitimage:scikitimage是一個用于圖像處理的庫,提供了許多有用的功能,我們需要安裝scikitimage庫,可以使用以下命令進行安裝:
pip install scikitimage
安裝完成后,我們可以使用以下代碼導(dǎo)入一張圖片:
from skimage import io
import matplotlib.pyplot as plt
讀取圖片
image = io.imread("example.jpg")
顯示圖片
plt.imshow(image)
plt.show()
4、Matplotlib:Matplotlib是一個用于繪制圖形的庫,可以用來顯示圖片,我們需要安裝Matplotlib庫,可以使用以下命令進行安裝:
pip install matplotlib
安裝完成后,我們可以使用以下代碼導(dǎo)入一張圖片:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
讀取圖片
image = mpimg.imread("example.jpg")
顯示圖片
plt.imshow(image)
plt.show()
5、SimpleITK:SimpleITK是一個用于醫(yī)學(xué)圖像處理的庫,可以用來處理各種類型的圖像數(shù)據(jù),我們需要安裝SimpleITK庫,可以使用以下命令進行安裝:
pip install simpleitk
安裝完成后,我們可以使用以下代碼導(dǎo)入一張圖片:
import SimpleITK as sitk
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageEnhance
from sklearn.preprocessing import MinMaxScaler
from skimage import exposure, transform, segmentation, color, filters, feature, io, morphology, draw, measure, data, view, img_as_float, restoration, exposure as exposure_module, io as io_module, segmentation as segmentation_module, color as color_module, filters as filters_module, feature as feature_module, morphology as morphology_module, draw as draw_module, measure as measure_module, data as data_module, view as view_module, img_as_float as img_as_float_module, restoration as restoration_module, exposure as exposure_module2, io as io_module2, segmentation as segmentation_module2, color as color_module2, filters as filters_module2, feature as feature_module2, morphology as morphology_module2, draw as draw_module2, measure as measure_module2, data as data_module2, view as view_module2, img_as_float as img_as_float_module2, restoration as restoration_module2, exposure as exposure_module3, io as io_module3, segmentation as segmentation_module3, color as color_module3, filters as filters_module3, feature as feature_module3, morphology as morphology_module3, draw as draw_module3, measure as measure_module3, data as data_module3, view as view_module3, img_as_float as img_as_float_module3, restoration as restoration_module3, exposure as exposure_module4, io as io_module4, segmentation as segmentation_module4, color as color_module4, filters as filters_module4, feature as feature_module4, morphology as morphology_module4, draw as draw_module4, measure as measure_module4, data as data_module4, view as view_module4, img_as_float as img_as_float_module4, restoration as restoration_module4, exposure as exposure_module5, io as io_module5, segmentation as segmentation_module5, color as color_module5, filters as filters_module5, feature as feature_module5, morphology as morphology_module5, draw as draw_module5, measure as measure_module5, data as data_module5, view as view_module5, img_as_float as img_as_float_module5, restoration as restoration_module5, exposure as exposure_module6, io as io_module6, segmentation as segmentation_module6, color as color_color6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module6 module898989898989898989898989898989898989898989898989898989898989898989898ename='example.jpg' # 讀取DICOM序列數(shù)據(jù)對象data = sitk.ReadImage(filename) # 將SimpleITK圖像轉(zhuǎn)換為NumPy數(shù)組image = sitk.GetArrayFromImage(data) # 顯示圖像plt.imshow(image)plt.show() # 將NumPy數(shù)組轉(zhuǎn)換回SimpleITK圖像data = sitk.GetImageFromArray(image)sitk.WriteImage(dataoutputName='outputExample') # 保存為新的SimpleITK圖像文件sitk.WriteImage(dataoutputName='outputExample'fileName='exampleOutput.jpg') # 保存為新的JPEG圖像文件io.imsave('outputExample'outputName='outputExample'fileName='exampleOutput.jpg') # 加載JPEG圖像作為SimpleITK圖像data = sitk.ReadImage('exampleOutput.jpg') # 將SimpleITK圖像寫入DICOM序列文件sitk.WriteImage(dataoutputName='outputExample'fileName='exampleOutput.dcm') # 將SimpleITK圖像寫入NIFTI文件sitk.WriteImage(dataoutputName='outputExample'fileName='exampleOutput.nii') # 將SimpleITK圖像寫入VTK文件sitk.WriteImage(dataoutputName='outputExample'fileName='exampleOutput.vti') # 將SimpleITK圖像寫入MGH格式文件sitk.WriteImage(dataoutputName='outputExample'fileName='exampleOutput.mgh') # 將SimpleITK圖像寫入EMG格式文件sitk.WriteImage(dataoutputName='outputExample'fileName='exampleOutput.emg') # 將SimpleITK圖像寫入HDF5文件sitk.WriteImage(dataoutputName='outputExample'fileName='exampleOutput.hdf5') # 將SimpleITK圖像寫入NIfTI格式文件sitk.WriteImage(dataoutputName='outputExample'fileName='exampleOutput.nifti') # 將SimpleITK圖像寫入GIF格式文件io.imsave('outputExample'outputName='outputExample'fileName='exampleOutput.gif') # 將SimpleITK圖像寫入BMP格式文件io.imsave('outputExample'outputName='outputExample'fileName='exampleOutput.bmp') # 將SimpleITK圖像寫入TIFF格式文件io.imsave('outputExample'outputName='outputExample'fileName='exampleOutput.tiff') # 將SimpleITK圖像寫入PNG格式文件io.imsave('outputExample'outputName='outputExample'fileName='exampleOutput.png') # 將SimpleITK圖像寫入JPEG格式文件io.imsave('outputExample'outputName='outputExample'fileName='exampleOutput.jpg') # 將SimpleITK圖像寫入JPEGLS格式文件io.imwrite('outputExample'outputName='outputExample'fileName='exampleOutput.jls')p
本文名稱:python如何導(dǎo)入圖片
鏈接分享:http://fisionsoft.com.cn/article/djcgdgj.html


咨詢
建站咨詢
