新聞中心
java中怎么把矩陣讀入二維數(shù)組啊?
public class Test {
創(chuàng)新互聯(lián)于2013年創(chuàng)立,是專業(yè)互聯(lián)網(wǎng)技術(shù)服務(wù)公司,擁有項目成都網(wǎng)站制作、成都做網(wǎng)站、外貿(mào)營銷網(wǎng)站建設(shè)網(wǎng)站策劃,項目實施與項目整合能力。我們以讓每一個夢想脫穎而出為使命,1280元準格爾做網(wǎng)站,已為上家服務(wù),為準格爾各地企業(yè)和個人服務(wù),聯(lián)系電話:13518219792
//轉(zhuǎn)換為line*column數(shù)組
public void input(int[] datas,int line,int column){
int[][] arr = new int[line][column];
int l=0;
for(int i=0;iline;i++){
for(int j=0; jcolumn; j++){
arr[i][j] = datas[l];
l++;
}
}
//輸出測試
for(int i=0;iline;i++){
for(int j=0; jcolumn; j++){
System.out.print(arr[i][j] + " ");
}
}
}
public static void main(String[] args){
int[] datas = {1,2,3,4,5,6,7,8,9};
Test t = new Test();
t.input(datas, 3, 3);
}
}
JAVA建立一個5行4列的矩陣(數(shù)值直接在程序代碼中給定),
public class TestMatrix {
public static void main(String[] args){
int[][] a = {{2,4,1,4},{3,4,5,6},{0,1,2,3},{5,3,9,8},{1,2,3,4}};
int min = a[0][0];
int max = a[0][0];
int minrow = 0;
int mincol = 0;
int maxrow = 0;
int maxcol = 0;
for(int i = 0;i 5;i++){
for(int j = 0;j 4;j++){
if(a[i][j] = min){
min = a[i][j];
minrow = i;
mincol = j;
}
if(a[i][j] max){
max = a[i][j];
maxrow = i;
maxcol = j;
}
}
}
System.out.println("Min is:" + min + " Row is:" + minrow + " col is:" + mincol);
System.out.println("Max is:" + max + " Row is:" + maxrow + " col is:" + maxcol);
}
}
一、用JAVA編寫程序?qū)崿F(xiàn)矩陣乘積;int a[][]={{1,2,3},{4,5,6},{7,8,9}};求大神解答……謝謝
public class TestArrays{
public static void main(String []args){
int[][] a=new int[3][3];
int[][] b=new int[3][3];
int[][] c=new int[3][3];
//循環(huán)出兩個二維數(shù)組,如果是給定的數(shù)組,就可以直接寫最后的一個循環(huán)了
Ststem.out.println("矩陣A是:");
for(int i=0;ia.length;i++){
for(int j=0;ja[0].length;j++){
a[i][j]=(int)((Math.random())*10);
System.out.print(a[i][j]+" ");
}
}
Ststem.out.println("矩陣B是:");
for(int i=0;ib.length;i++){
for(int j=0;jb[0].length;j++){
b[i][j]=(int)((Math.random())*10);
System.out.print(b[i][j]+" ");
}
}
Ststem.out.println("矩陣A X B是:");
for(int i=0;ic.length;i++){
for(int j=0;jc[0].length;j++){
c[i][j]=0;
for(int k=0;kc.length;k++){
c[i][j]=a[i][k]*b[k][j]|d[i][j];
}
System.out.print(d[i][j]+" ");
}
System.out.println();
}
}
}
如何用java編寫一個矩陣的轉(zhuǎn)置?
(別說格式有問題代碼就是這樣的)編寫矩陣顯示方法,用于顯示我們的矩陣數(shù)據(jù);
private static void printArray(int[][] arr){
for(int i=0;iarr.length;i++){
for(int j=0;jarr.length;j++){
System.out.print(arr[i][j]+" ");
}
System.out.println();
填寫一個要求解轉(zhuǎn)置的矩陣方法;
編寫行變列列變行的代碼,即實現(xiàn)我們的矩陣值裝置求解方法;
public static void main(String[] args) {
int arr[][] =new int[][]{{1,2,3},{4,5,6},{7,8,9}};
System.out.println("行列互換前");
printArray(arr);
int arr2[][]=new int[arr.length][arr.length];
for(int i=0;iarr.length;i++){
for(int j=0;jarr.length;j++){
arr2[i][j]=arr[j][i];
}
}
System.out.println("行列互換后:");
printArray(arr2);
用java聲明Matrix類表示矩陣,使用二維數(shù)組存儲矩陣元素,實現(xiàn)以下方法:
public class Matrix {
private static String matrix_A;
private int mx[][], m, n;
public Matrix(int r, int c) {
m = r;
n = c;
mx = new int[m][n];
iniMatrix();
}
public Matrix() {
m = 3;
n = 3;
mx = new int[3][3];
iniMatrix();
}
public void iniMatrix()// 隨機取數(shù)
{
int i, j;
for (i = 0; i = m - 1; i++)
for (j = 0; j = n - 1; j++)
mx[i][j] = (int) (Math.random() * 100);
}
public void tranMatrix()// 轉(zhuǎn)置矩陣
{
int i, j, t;
int mt[][] = new int[m][n];
for (i = 0; i = m - 1; i++)
for (j = 0; j = n - 1; j++)
mt[i][j] = mx[i][j];
t = m;
m = n;
n = t;
mx = new int[m][n];
for (i = 0; i = m - 1; i++)
for (j = 0; j = n - 1; j++)
mx[i][j] = mt[j][i];
}
public void printMatrix()// 輸出矩陣所有值
{
int i, j;
for (i = 0; i = m - 1; i++) {
for (j = 0; j = n - 1; j++)
System.out.print(" " + mx[i][j]);
System.out.println();
}
}
//判斷一個矩陣是否為上三角矩陣
public boolean isUpperTriangularMatrix() {
int i, j = 0;
int c = this.mx[1][0];
for(i=1; ithis.mx.length; i++)
for(j=0; ji; j++)
if(this.mx[i][j] != c)
break;
if(i=this.mx.length)
return true;
return false;
}
public void addMatrix(Matrix b)// 矩陣相加
{
int i, j;
for (i = 0; i = m - 1; i++)
for (j = 0; j = n - 1; j++)
mx[i][j] = mx[i][j] + b.mx[i][j];
}
public static void main(String args[]) {
Matrix ma = new Matrix(4, 3);
Matrix mb = new Matrix(4, 3);
System.out.println("The matrix_A:");
ma.printMatrix();
System.out.println("The matrix_B:");
mb.printMatrix();
if(ma.isUpperTriangularMatrix())
System.out.println("上三角矩陣:\n" + ma.isUpperTriangularMatrix());
System.out.println("Matrix_A + Matrix_B:");
ma.addMatrix(mb);
ma.printMatrix();
System.out.println("Transpose Matrix_A:");
mb.tranMatrix();
mb.printMatrix();
System.out.println("Transpose Matrix_A+Matrix_B:");
mb.tranMatrix();
mb.printMatrix();
}
}
java編寫程序,提示用戶輸入一個方陣的長度,隨機地在矩陣中填入0或1,打印這個矩陣,然后找出整行
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner input = new Scanner(System.in);
System.out.print("Enter the size for the matrix: ");
int size = input.nextInt();
int [][] array = new int [size][size];
for(int i = 0;isize;i++) {
for(int a = 0;asize;a++) {
array[i][a]=(int)(Math.random()*2);
System.out.print(array[i][a]+" ");
}
System.out.println();
}
row(array);
column(array);
diagonal(array);
subdiagonal(array);
}
public static void row(int [][] array) {
boolean bool = true ;
for(int i=0;iarray.length;i++) {
bool = true;
for(int a=0;aarray[i].length-1;a++) {
if(array[i][a]!=array[i][a+1]) {
bool = false;
}
}
if(bool) {
System.out.println((i+1)+" hang is "+array[i][0]);
}
}
}
public static void column(int [][] array) {
boolean bool = true ;
for(int a=0;aarray.length;a++) {
bool = true;
for(int i=0;iarray[a].length-1;i++) {
if(array[i][a]!=array[i+1][a]) {
bool = false;
}
}
if(bool) {
System.out.println((a+1)+" lie is "+array[0][a]);
}
}
}
public static void diagonal(int [][] array) {
boolean bool = true ;
int i;
for(i=0;iarray.length-1;i++) {
if(array[i][i]!=array[i+1][i+1]) {
bool = false;
}
}
if(bool) {
System.out.println("major diagonal is "+array[i][i]);
}
}
public static void subdiagonal(int [][] array) {
boolean bool = true ;
for(int i=array.length-1;i0;i--) {
for(int a = array.length-i-1;aarray.length-i;a++) {
if(array[i][a]!=array[i-1][a+1]) {
bool = false;
}
}
}
if(bool) {
System.out.println("sub-diagonal is "+array[0][array.length-1]);
}
}
}
網(wǎng)頁題目:矩陣導(dǎo)入java代碼 java實現(xiàn)矩陣
網(wǎng)站網(wǎng)址:http://fisionsoft.com.cn/article/docehee.html