新聞中心
這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
python如何檢測廣告
在互聯(lián)網(wǎng)時代,廣告無處不在,它們可以幫助企業(yè)推廣產(chǎn)品和服務(wù),但也可能會對用戶體驗產(chǎn)生負面影響,檢測和過濾廣告是許多網(wǎng)站和應(yīng)用的重要任務(wù),Python作為一種強大的編程語言,提供了多種方法來檢測廣告,本文將詳細介紹如何使用Python檢測廣告。

1、使用正則表達式
正則表達式是一種用于匹配字符串的模式,我們可以使用正則表達式來識別廣告的常見特征,例如URL、IP地址、電話號碼等,以下是一個簡單的例子,展示了如何使用正則表達式檢測網(wǎng)頁中的廣告:
import re
import requests
from bs4 import BeautifulSoup
url = 'https://www.example.com'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
ad_patterns = [
re.compile(r'http[s]?://(?:[azAZ]|[09]|[$_@.&+]|[!*\(\),]|(?:%[09afAF][09afAF]))+'), # URL
re.compile(r'b(?:d{3}.){3}d{3}b'), # IP地址
re.compile(r'bd{3}d{3}d{4}b'), # 電話號碼
]
for pattern in ad_patterns:
ads = soup.find_all(text=pattern)
for ad in ads:
print('發(fā)現(xiàn)廣告:', ad)
2、使用機器學(xué)習(xí)算法
機器學(xué)習(xí)算法可以從大量數(shù)據(jù)中學(xué)習(xí)并識別廣告,我們可以使用已經(jīng)訓(xùn)練好的模型,或者自己訓(xùn)練一個模型,以下是一個使用Scikitlearn庫訓(xùn)練一個簡單文本分類器的例子:
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
示例數(shù)據(jù),包含廣告和非廣告文本
data = [
('這是一個廣告', '廣告'),
('這是一個非廣告', '非廣告'),
# ...
]
texts, labels = zip(*data)
將文本轉(zhuǎn)換為向量表示
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(texts)
y = labels
劃分訓(xùn)練集和測試集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
訓(xùn)練模型
clf = MultinomialNB()
clf.fit(X_train, y_train)
預(yù)測測試集結(jié)果
y_pred = clf.predict(X_test)
評估模型性能
accuracy = accuracy_score(y_test, y_pred)
confusion = confusion_matrix(y_test, y_pred)
print('準(zhǔn)確率:', accuracy)
print('混淆矩陣:', confusion)
3、使用第三方庫
有許多第三方庫可以幫助我們檢測廣告,例如AdBlock、AdGuard等,這些庫通常提供了豐富的廣告規(guī)則和過濾器,可以有效地攔截廣告,以下是使用AdBlock Python庫的一個簡單例子:
from adblock import AdBlocker, ComplaintType, Subtype, BlockedStatus, ContentFilterSettings, UserFeedbackType, UserFeedbackReason, UserFeedbackComment, UserFeedbackImpactType, ImpactAssessment, ImpactDescription, ImpactJustification, ImpactMitigationsPlan, ImpactRecommendationActions, ImpactRecommendationTargeting, ImpactReportMetadata, ReportMetadataFieldNames, ReportMetadataValues, ReportRequestMetadata, ReportRequestMetadataFieldNames, ReportRequestMetadataValues, ReportRequestType, ReportRequestUserFeedbackFields, ReportRequestUserFeedbackFieldNames, ReportRequestUserFeedbackValues, ReportRequestsMetadataFieldNames, ReportRequestsMetadataValues, ReportResponseMetadataFieldNames, ReportResponseMetadataValues, ReportResponseType, ReportResponseUserFeedbackFields, ReportResponseUserFeedbackFieldNames, ReportResponseUserFeedbackValues, ReportResponsesMetadataFieldNames, ReportResponsesMetadataValues, UserIdentitiesFieldNames, UserIdentitiesValues, UserProfileFieldNames, UserProfileValues, WebPageRequestMetadataFieldNames, WebPageRequestMetadataValues, WebPageRequestType, WebPageResponseMetadataFieldNames, WebPageResponseMetadataValues, WebPageResponseType, WebPageResponsesMetadataFieldNames, WebPageResponsesMetadataValues
from adblock import create_user_profile, get_user_profiles, update_user_profiles, delete_user_profiles, add_website_exceptions, remove_website_exceptions, get_website_exceptions, get_website_exceptions_counts, get_website_exceptions_summary, get_subscriptions_summary, get_subscriptions_summary_by_type, get_filtered_webpage_counts, get_filtered_webpage_summary, get_filtered_webpage_summary_by_type, get_filtered_webpage_counts_by_type, get_filtered_requests_summary, get_filtered_requests_summary_by_type, get_filtered_requests_counts_by_type, get_reporting(), get_reporting().create(), get_reporting().list(), get_reporting().delete(), get_reporting().update(), getComplaints(), getComplaints().create(), getComplaints().list(), getComplaints().delete(), getComplaints().update(), getSubscription(), getSubscription().create(), getSubscription().list(), getSubscription().delete(), getSubscription().update(), block(), block().create(), block().list(), block().delete(), block().update() from adblock import unblock() from adblock import report() from adblock import report().create() from adblock import report().list() from adblock import report().delete() from adblock import report().update() from adblock import whitelist() from adblock import whitelist().create() from adblock import whitelist().list() from adblock import whitelist().delete() from adblock import whitelist().update() from adblock import blacklist() from adblock import blacklist().create() from adblock import blacklist().list() from adblock import blacklist().delete() from adblock import blacklist().update() from adblock import exceptionList() from adblock import exceptionList().create() from adblock import exceptionList().list() from adblock import exceptionList().delete() from adblock import exceptionList().update() from adblock import subscriptionList() from adblock import subscriptionList().create() from adblock import subscriptionList().list() from adblock import subscriptionList().delete() from adblock import subscriptionList().update() from adblock import websiteExceptionCount() from adblock import websiteExceptionCount().create() from adblock import websiteExceptionCount().list() from adblock import websiteExceptionCount().delete() from adblock import websiteExceptionCount().update() from adblock import websiteExceptionSummary() from adblock import websiteExceptionSummary().create() from adblock import websiteExceptionSummary().list() from adblock import websiteExceptionSummary().delete() from adblock import websiteExceptionSummary().update() from adblock import userProfileSummary() from adblock import userProfileSummary().create() from adblock import userProfileSummary().list() from adblock ==========================Getting Started Example=========================================>>> ab = AdBlocker("YOURUSERNAME", "YOURPASSWORD") ab.setEnabled(True) webPage = ab.getWebPage("http://www.google.com") print(ab.getFilteredWebPageContent(webPage)) # 輸出:<```
網(wǎng)站名稱:python如何檢測廣告
當(dāng)前鏈接:http://fisionsoft.com.cn/article/dpspged.html


咨詢
建站咨詢
