新聞中心
為什么要改進(jìn)成C4.5算法
原理
C4.5算法是在ID3算法上的一種改進(jìn),它與ID3算法大的區(qū)別就是特征選擇上有所不同,一個(gè)是基于信息增益比,一個(gè)是基于信息增益。
之所以這樣做是因?yàn)樾畔⒃鲆鎯A向于選擇取值比較多的特征(特征越多,條件熵(特征劃分后的類別變量的熵)越小,信息增益就越大);因此在信息增益下面加一個(gè)分母,該分母是當(dāng)前所選特征的熵,注意:這里而不是類別變量的熵了。
這樣就構(gòu)成了新的特征選擇準(zhǔn)則,叫做信息增益比。為什么加了這樣一個(gè)分母就會消除ID3算法傾向于選擇取值較多的特征呢?
因?yàn)樘卣魅≈翟蕉啵撎卣鞯撵鼐驮酱?,分母也就越大,所以信息增益比就會減小,而不是像信息增益那樣增大了,一定程度消除了算法對特征取值范圍的影響。
實(shí)現(xiàn)
在算法實(shí)現(xiàn)上,C4.5算法只是修改了信息增益計(jì)算的函數(shù)calcShannonEntOfFeature和最優(yōu)特征選擇函數(shù)chooseBestFeatureToSplit。
calcShannonEntOfFeature在ID3的calcShannonEnt函數(shù)上加了個(gè)參數(shù)feat,ID3中該函數(shù)只用計(jì)算類別變量的熵,而calcShannonEntOfFeature可以計(jì)算指定特征或者類別變量的熵。
chooseBestFeatureToSplit函數(shù)在計(jì)算好信息增益后,同時(shí)計(jì)算了當(dāng)前特征的熵IV,然后相除得到信息增益比,以大信息增益比作為最優(yōu)特征。
在劃分?jǐn)?shù)據(jù)的時(shí)候,有可能出現(xiàn)特征取同一個(gè)值,那么該特征的熵為0,同時(shí)信息增益也為0(類別變量劃分前后一樣,因?yàn)樘卣髦挥幸粋€(gè)取值),0/0沒有意義,可以跳過該特征。
#coding=utf-8 import operator from math import log import time import os, sys import string def createDataSet(trainDataFile): print trainDataFile dataSet = [] try: fin = open(trainDataFile) for line in fin: line = line.strip() cols = line.split('\t') row = [cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], cols[7], cols[8], cols[9], cols[10], cols[0]] dataSet.append(row) #print row except: print 'Usage xxx.py trainDataFilePath' sys.exit() labels = ['cip1', 'cip2', 'cip3', 'cip4', 'sip1', 'sip2', 'sip3', 'sip4', 'sport', 'domain'] print 'dataSetlen', len(dataSet) return dataSet, labels #calc shannon entropy of label or feature def calcShannonEntOfFeature(dataSet, feat): numEntries = len(dataSet) labelCounts = {} for feaVec in dataSet: currentLabel = feaVec[feat] if currentLabel not in labelCounts: labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob, 2) return shannonEnt def splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 #last col is label baseEntropy = calcShannonEntOfFeature(dataSet, -1) bestInfoGainRate = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob *calcShannonEntOfFeature(subDataSet, -1) #calc conditional entropy infoGain = baseEntropy - newEntropy iv = calcShannonEntOfFeature(dataSet, i) if(iv == 0): #value of the feature is all same,infoGain and iv all equal 0, skip the feature continue infoGainRate = infoGain / iv if infoGainRate > bestInfoGainRate: bestInfoGainRate = infoGainRate bestFeature = i return bestFeature #feature is exhaustive, reture what you want label def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 return max(classCount) def createTree(dataSet, labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) ==len(classList): #all data is the same label return classList[0] if len(dataSet[0]) == 1: #all feature is exhaustive return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] if(bestFeat == -1): #特征一樣,但類別不一樣,即類別與特征不相關(guān),隨機(jī)選第一個(gè)類別做分類結(jié)果 return classList[0] myTree = {bestFeatLabel:{}} del(labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) return myTree def main(): if(len(sys.argv) < 3): print 'Usage xxx.py trainSet outputTreeFile' sys.exit() data,label = createDataSet(sys.argv[1]) t1 = time.clock() myTree = createTree(data,label) t2 = time.clock() fout = open(sys.argv[2], 'w') fout.write(str(myTree)) fout.close() print 'execute for ',t2-t1 if __name__=='__main__': main()
當(dāng)前文章:Python實(shí)現(xiàn)決策樹C4.5算法的示例-創(chuàng)新互聯(lián)
當(dāng)前URL:http://fisionsoft.com.cn/article/dseodi.html