新聞中心
python max()函數(shù)
print?max.__doc__
我們提供的服務有:網(wǎng)站建設(shè)、成都網(wǎng)站設(shè)計、微信公眾號開發(fā)、網(wǎng)站優(yōu)化、網(wǎng)站認證、扎賚諾爾ssl等。為1000多家企事業(yè)單位解決了網(wǎng)站和推廣的問題。提供周到的售前咨詢和貼心的售后服務,是有科學管理、有技術(shù)的扎賚諾爾網(wǎng)站制作公司
max(iterable[,?key=func])?-?value
max(a,?b,?c,?...[,?key=func])?-?value
With?a?single?iterable?argument,?return?its?largest?item.
With?two?or?more?arguments,?return?the?largest?argument.
后面的func,是比較函數(shù),條件成立后,max執(zhí)行結(jié)束。
所以:
array1
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
max(array1, key=lambda x: x 6)
7
如果:
max([i?for?i?in?range(0,9)],?key=lambda?x:?x?=?6)
6
執(zhí)行結(jié)果就是6
python數(shù)據(jù)分析與應用第三章代碼3-5的數(shù)據(jù)哪來的
savetxt
import numpy as np
i2 = np.eye(2)
np.savetxt("eye.txt", i2)
3.4 讀入CSV文件
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index從0開始
3.6.1 算術(shù)平均值
np.mean(c) = np.average(c)
3.6.2 加權(quán)平均值
t = np.arange(len(c))
np.average(c, weights=t)
3.8 極值
np.min(c)
np.max(c)
np.ptp(c) 最大值與最小值的差值
3.10 統(tǒng)計分析
np.median(c) 中位數(shù)
np.msort(c) 升序排序
np.var(c) 方差
3.12 分析股票收益率
np.diff(c) 可以返回一個由相鄰數(shù)組元素的差
值構(gòu)成的數(shù)組
returns = np.diff( arr ) / arr[ : -1] #diff返回的數(shù)組比收盤價數(shù)組少一個元素
np.std(c) 標準差
對數(shù)收益率
logreturns = np.diff( np.log(c) ) #應檢查輸入數(shù)組以確保其不含有零和負數(shù)
where 可以根據(jù)指定的條件返回所有滿足條件的數(shù)
組元素的索引值。
posretindices = np.where(returns 0)
np.sqrt(1./252.) 平方根,浮點數(shù)
3.14 分析日期數(shù)據(jù)
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)
print "Dates =", dates
def datestr2num(s):
return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()
# 星期一 0
# 星期二 1
# 星期三 2
# 星期四 3
# 星期五 4
# 星期六 5
# 星期日 6
#output
Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.
1. 2. 3. 4.]
averages = np.zeros(5)
for i in range(5):
indices = np.where(dates == i)
prices = np.take(close, indices) #按數(shù)組的元素運算,產(chǎn)生一個數(shù)組作為輸出。
a = [4, 3, 5, 7, 6, 8]
indices = [0, 1, 4]
np.take(a, indices)
array([4, 3, 6])
np.argmax(c) #返回的是數(shù)組中最大元素的索引值
np.argmin(c)
3.16 匯總數(shù)據(jù)
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
#得到第一個星期一和最后一個星期五
first_monday = np.ravel(np.where(dates == 0))[0]
last_friday = np.ravel(np.where(dates == 4))[-1]
#創(chuàng)建一個數(shù)組,用于存儲三周內(nèi)每一天的索引值
weeks_indices = np.arange(first_monday, last_friday + 1)
#按照每個子數(shù)組5個元素,用split函數(shù)切分數(shù)組
weeks_indices = np.split(weeks_indices, 5)
#output
[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]
weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)
def summarize(a, o, h, l, c): #open, high, low, close
monday_open = o[a[0]]
week_high = np.max( np.take(h, a) )
week_low = np.min( np.take(l, a) )
friday_close = c[a[-1]]
return("APPL", monday_open, week_high, week_low, friday_close)
np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的數(shù)組名、分隔符(在這個例子中為英文標點逗號)以及存儲浮點數(shù)的格式。
0818b9ca8b590ca3270a3433284dd417.png
格式字符串以一個百分號開始。接下來是一個可選的標志字符:-表示結(jié)果左對齊,0表示左端補0,+表示輸出符號(正號+或負號-)。第三部分為可選的輸出寬度參數(shù),表示輸出的最小位數(shù)。第四部分是精度格式符,以”.”開頭,后面跟一個表示精度的整數(shù)。最后是一個類型指定字符,在例子中指定為字符串類型。
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
b = np.array([[1,2,3], [4,5,6], [7,8,9]])
np.apply_along_axis(my_func, 0, b) #沿著X軸運動,取列切片
array([ 4., 5., 6.])
np.apply_along_axis(my_func, 1, b) #沿著y軸運動,取行切片
array([ 2., 5., 8.])
b = np.array([[8,1,7], [4,3,9], [5,2,6]])
np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
[3, 4, 9],
[2, 5, 6]])
3.20 計算簡單移動平均線
(1) 使用ones函數(shù)創(chuàng)建一個長度為N的元素均初始化為1的數(shù)組,然后對整個數(shù)組除以N,即可得到權(quán)重。如下所示:
N = int(sys.argv[1])
weights = np.ones(N) / N
print "Weights", weights
在N = 5時,輸出結(jié)果如下:
Weights [ 0.2 0.2 0.2 0.2 0.2] #權(quán)重相等
(2) 使用這些權(quán)重值,調(diào)用convolve函數(shù):
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
sma = np.convolve(weights, c)[N-1:-N+1] #卷積是分析數(shù)學中一種重要的運算,定義為一個函數(shù)與經(jīng)過翻轉(zhuǎn)和平移的另一個函數(shù)的乘積的積分。
t = np.arange(N - 1, len(c)) #作圖
plot(t, c[N-1:], lw=1.0)
plot(t, sma, lw=2.0)
show()
3.22 計算指數(shù)移動平均線
指數(shù)移動平均線(exponential moving average)。指數(shù)移動平均線使用的權(quán)重是指數(shù)衰減的。對歷史上的數(shù)據(jù)點賦予的權(quán)重以指數(shù)速度減小,但永遠不會到達0。
x = np.arange(5)
print "Exp", np.exp(x)
#output
Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]
Linspace 返回一個元素值在指定的范圍內(nèi)均勻分布的數(shù)組。
print "Linspace", np.linspace(-1, 0, 5) #起始值、終止值、可選的元素個數(shù)
#output
Linspace [-1. -0.75 -0.5 -0.25 0. ]
(1)權(quán)重計算
N = int(sys.argv[1])
weights = np.exp(np.linspace(-1. , 0. , N))
(2)權(quán)重歸一化處理
weights /= weights.sum()
print "Weights", weights
#output
Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]
(3)計算及作圖
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
ema = np.convolve(weights, c)[N-1:-N+1]
t = np.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, ema, lw=2.0)
show()
3.26 用線性模型預測價格
(x, residuals, rank, s) = np.linalg.lstsq(A, b) #系數(shù)向量x、一個殘差數(shù)組、A的秩以及A的奇異值
print x, residuals, rank, s
#計算下一個預測值
print np.dot(b, x)
3.28 繪制趨勢線
x = np.arange(6)
x = x.reshape((2, 3))
x
array([[0, 1, 2], [3, 4, 5]])
np.ones_like(x) #用1填充數(shù)組
array([[1, 1, 1], [1, 1, 1]])
類似函數(shù)
zeros_like
empty_like
zeros
ones
empty
3.30 數(shù)組的修剪和壓縮
a = np.arange(5)
print "a =", a
print "Clipped", a.clip(1, 2) #將所有比給定最大值還大的元素全部設(shè)為給定的最大值,而所有比給定最小值還小的元素全部設(shè)為給定的最小值
#output
a = [0 1 2 3 4]
Clipped [1 1 2 2 2]
a = np.arange(4)
print a
print "Compressed", a.compress(a 2) #返回一個根據(jù)給定條件篩選后的數(shù)組
#output
[0 1 2 3]
Compressed [3]
b = np.arange(1, 9)
print "b =", b
print "Factorial", b.prod() #輸出數(shù)組元素階乘結(jié)果
#output
b = [1 2 3 4 5 6 7 8]
Factorial 40320
print "Factorials", b.cumprod()
#output
python的sum函數(shù)怎么用
sum(iterable[, start]) ,iterable為可迭代對象,如:
sum([ ], start) ?, #iterable為list列表。
sum(( ), start ) , #iterable為tuple元組。
最后的值=可迭代對應里面的數(shù)相加的值 + start的值
start默認為0,如果不寫就是0,為0時可以不寫,即sum()的參數(shù)最多為兩個,其中第一個必須為iterable。
按照慣例,在開發(fā)語言中,sum函數(shù)是求和函數(shù),求多個數(shù)據(jù)的和,而在python中,雖然也是求和函數(shù),但稍微有些差別,sum()傳入的參數(shù)得是可迭代對象(比如列表就是一個可迭代對象),返回這個被傳入可迭代對象內(nèi)參數(shù)的和。
比如:
python里想自己定義一個SMA(移動加權(quán)平均)的函數(shù)
python是當下十分火爆的編程語言,尤其在人工智能應用方面。如果有心從事編程方向的工作,最好到專業(yè)機構(gòu)深入學習、多實踐,更貼近市場,這樣更有利于將來的發(fā)展。
本文名稱:pythonsma函數(shù),冪函數(shù)python
本文URL:http://fisionsoft.com.cn/article/dsipsci.html