最近2018中文字幕在日韩欧美国产成人片_国产日韩精品一区二区在线_在线观看成年美女黄网色视频_国产精品一区三区五区_国产精彩刺激乱对白_看黄色黄大色黄片免费_人人超碰自拍cao_国产高清av在线_亚洲精品电影av_日韩美女尤物视频网站

RELATEED CONSULTING
相關(guān)咨詢
選擇下列產(chǎn)品馬上在線溝通
服務(wù)時間:8:30-17:00
你可能遇到了下面的問題
關(guān)閉右側(cè)工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
Flink的CoGroup如何使用

這篇文章主要介紹“Flink的CoGroup如何使用”,在日常操作中,相信很多人在Flink的CoGroup如何使用問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”Flink的CoGroup如何使用”的疑惑有所幫助!接下來,請跟著小編一起來學(xué)習(xí)吧!

在網(wǎng)站制作、成都網(wǎng)站制作中從網(wǎng)站色彩、結(jié)構(gòu)布局、欄目設(shè)置、關(guān)鍵詞群組等細微處著手,突出企業(yè)的產(chǎn)品/服務(wù)/品牌,幫助企業(yè)鎖定精準用戶,提高在線咨詢和轉(zhuǎn)化,使成都網(wǎng)站營銷成為有效果、有回報的無錫營銷推廣。成都創(chuàng)新互聯(lián)公司專業(yè)成都網(wǎng)站建設(shè)10年了,客戶滿意度97.8%,歡迎成都創(chuàng)新互聯(lián)客戶聯(lián)系。

CoGroup算子:將兩個數(shù)據(jù)流按照key進行g(shù)roup分組,并將數(shù)據(jù)流按key進行分區(qū)的處理,最終合成一個數(shù)據(jù)流(與join有區(qū)別,不管key有沒有關(guān)聯(lián)上,最終都會合并成一個數(shù)據(jù)流)

示例環(huán)境

java.version: 1.8.x
flink.version: 1.11.1

示例數(shù)據(jù)源 (項目碼云下載)

Flink 系例 之 搭建開發(fā)環(huán)境與數(shù)據(jù)

CoGroup.java

package com.flink.examples.functions;

import com.flink.examples.DataSource;
import com.google.gson.Gson;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.CoGroupFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import java.time.Duration;
import java.util.Arrays;
import java.util.List;

/**
 * @Description CoGroup算子:將兩個數(shù)據(jù)流按照key進行g(shù)roup分組,并將數(shù)據(jù)流按key進行分區(qū)的處理,最終合成一個數(shù)據(jù)流(與join有區(qū)別,不管key有沒有關(guān)聯(lián)上,最終都會合并成一個數(shù)據(jù)流)
 */
public class CoGroup {

    /**
     * 兩個數(shù)據(jù)流集合,對相同key進行內(nèi)聯(lián),分配到同一個窗口下,合并并打印
     * @param args
     * @throws Exception
     */
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        //watermark 自動添加水印調(diào)度時間
        //env.getConfig().setAutoWatermarkInterval(200);

        List> tuple3List1 = DataSource.getTuple3ToList();
        List> tuple3List2 = Arrays.asList(
                new Tuple3<>("伍七", "girl", 18),
                new Tuple3<>("吳八", "man", 30)
        );
        //Datastream 1
        DataStream> dataStream1 = env.fromCollection(tuple3List1)
                //添加水印窗口,如果不添加,則時間窗口會一直等待水印事件時間,不會執(zhí)行apply
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                        .withTimestampAssigner((element, timestamp) -> System.currentTimeMillis()));
        //Datastream 2
        DataStream> dataStream2 = env.fromCollection(tuple3List2)
                //添加水印窗口,如果不添加,則時間窗口會一直等待水印事件時間,不會執(zhí)行apply
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                        .withTimestampAssigner(new SerializableTimestampAssigner>() {
                            @Override
                            public long extractTimestamp(Tuple3 element, long timestamp) {
                                return System.currentTimeMillis();
                            }
                        })
                );

        //對dataStream1和dataStream2兩個數(shù)據(jù)流進行關(guān)聯(lián),沒有關(guān)聯(lián)也保留
        //Datastream 3
        DataStream newDataStream = dataStream1.coGroup(dataStream2)
                .where(new KeySelector, String>() {
                    @Override
                    public String getKey(Tuple3 value) throws Exception {
                        return value.f1;
                    }
                })
                .equalTo(t3->t3.f1)
                .window(TumblingEventTimeWindows.of(Time.seconds(1)))
                .apply(new CoGroupFunction, Tuple3, String>() {
                    @Override
                    public void coGroup(Iterable> first, Iterable> second, Collector out) throws Exception {
                        StringBuilder sb = new StringBuilder();
                        Gson gson = new Gson();
                        //datastream1的數(shù)據(jù)流集合
                        for (Tuple3 tuple3 : first) {
                            sb.append(gson.toJson(tuple3)).append("\n");
                        }
                        //datastream2的數(shù)據(jù)流集合
                        for (Tuple3 tuple3 : second) {
                            sb.append(gson.toJson(tuple3)).append("\n");
                        }
                        out.collect(sb.toString());
                    }
                });
        newDataStream.print();
        env.execute("flink CoGroup job");
    }

}

打印結(jié)果

{"f0":"張三","f1":"man","f2":20}
{"f0":"王五","f1":"man","f2":29}
{"f0":"吳八","f1":"man","f2":30}
{"f0":"吳八","f1":"man","f2":30}

{"f0":"李四","f1":"girl","f2":24}
{"f0":"劉六","f1":"girl","f2":32}
{"f0":"伍七","f1":"girl","f2":18}
{"f0":"伍七","f1":"girl","f2":18}

到此,關(guān)于“Flink的CoGroup如何使用”的學(xué)習(xí)就結(jié)束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學(xué)習(xí),快去試試吧!若想繼續(xù)學(xué)習(xí)更多相關(guān)知識,請繼續(xù)關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編會繼續(xù)努力為大家?guī)砀鄬嵱玫奈恼拢?/p>
標題名稱:Flink的CoGroup如何使用
標題來源:http://fisionsoft.com.cn/article/jgcepj.html